QC plot: 2D scatter plot for coverage ~ AF
plot_af_coverage(
mtmutObj,
loc,
model = NULL,
p_threshold = NULL,
alt_count_threshold = NULL,
p_adj_method = NULL
)
an object of class "mtmutObj".
a string of genome location, e.g. "chrM.200".
a string of model name, one of "bb", "bm", "bi", the default value is "bb".
a numeric value of p-value threshold, the default is 0.05.
a numeric value of alternative allele count threshold, the default is NULL, which means use the value in mtmutObj.
a string of p-value adjustment method, the default is FDR.
a ggplot object.
## Use the example data
f <- system.file("extdata", "mini_dataset.tsv.gz", package = "scMitoMut")
## Create a temporary h5 file
## In real case, we keep the h5 in project folder for future use
f_h5_tmp <- tempfile(fileext = ".h5")
## Load the data with parse_table function
f_h5 <- parse_table(f, sep = "\t", h5_file = f_h5_tmp)
# open the h5f file
x <- open_h5_file(f_h5)
# run the model fit
run_model_fit(x)
#> chrM.200
#> chrM.204
#> chrM.310
#> chrM.824
#> chrM.1000
#> chrM.1001
#> chrM.1227
#> chrM.2285
#> chrM.6081
#> chrM.9429
#> chrM.9728
#> chrM.9804
#> chrM.9840
#> chrM.12889
#> chrM.16093
#> chrM.16147
#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 2126169 113.6 3221262 172.1 3221262 172.1
#> Vcells 4298116 32.8 10146329 77.5 10123834 77.3
x
#> mtmutObj object
#> -------------------------------------------------
#> h5 file: /tmp/RtmppwH5Ub/file2395de0e13a6.h5
#> Available loci: 16
#> Selected loci: 16
#> Available cells: 1359
#> Selected cells: 1359
#> Loci passed the filter: 0
#> filter parameters:
#> min_cell: 1
#> model: bb
#> p_threshold: 0.05
#> alt_count_threshold: 0
#> p_adj_method: fdr
# Filter the loci based on the model fit results
x <- filter_loc(x, min_cell = 5, model = "bb", p_threshold = 0.05, p_adj_method = "fdr")
# plot the locus profile for chrM.200
plot_af_coverage(x, "chrM.204")